

NEWS SULLA PROTEZIONE CIVILE

Buongiorno,

bentrovata/o con **La ProCivetta**, la newsletter de <u>IlGiornaledellaProtezioneCivile.it</u>. Puoi trovare i numeri inviati finora sul <u>nostro sito</u>. Aspettiamo il tuo feedback e i tuoi suggerimenti. Se ti piace quello che facciamo, invita amiche e amici a <u>iscriversi</u>.

Oggi parliamo della voragine che si è aperta a Napoli, dello studio sui segnali premonitori dei terremoti e di altro ancora. In fondo trovi i nostri consigli di lettura.

LA VORAGINE A NAPOLI

La proposta di Sigea

Dopo il cedimento della strada nel quartiere del Vomero a Napoli di mercoledì 21 febbraio, la sezione campana della Società Italiana di Geologia Ambientale ha lanciato la proposta dal nostro giornale di dar vita a un piano di prevenzione per evitare che fatti del genere possano ripetersi.

I problemi della rete idrica

A parlarcene è stato il presidente di Sigea Campania e Molise, Gaetano Sammartino. Per prima cosa Sammartino ha illustrato le dinamiche dell'evento: "I problemi sono legati alla rete idrica, a una conduttura che è saltata e quindi è uscita l'acqua che si è infiltrata nel sottosuolo. Il sottosuolo in questo punto ha una natura non ottimale e quindi facilmente erodibile e ha creato la voragine" spiega il geologo.

Mappatura delle reti del sottosuolo

Le soluzioni al problema ci sarebbero, secondo Sammartino: "L'area campana è piuttosto vulnerabile ad eventi di questo tipo, specie quando non si effettuano le opere di manutenzione e di monitoraggio". Uno

strumento utile per prevenire fenomeni del genere sarebbe la mappatura delle reti del sottosuolo, delle infrastrutture fognarie e idriche. Di qui la proposta della Società Italiana di Geologia Ambientale della Campania: "Il supporto che possiamo dare noi geologi è quello di fare un piano di prevenzione che contenga le misure che devono essere adottate per fare in modo che rischi del genere vengano mitigati".

UNA NUOVA IPOTESI PER I GRANDI TERREMOTI

La ricerca in California

Un team italiano di scienziati ha analizzato la sismicità della California degli ultimi trent'anni per comprendere quali possano essere <u>segnali</u> <u>premonitori dei grandi terremoti</u>. La ricerca, appena pubblicata sulla rivista <u>Journal of Geophysical Research</u>, ha aperto nuove prospettive sul tema, combinando dei modelli teorici con analisi statistiche.

I foreshocks e le probabilità

La loro ricerca ha evidenziato che i cosiddetti foreshocks, cioè i terremoti di lieve e moderata entità che possono precedere i terremoti più violenti, tendono a diffondersi su aree più grandi, hanno magnitudo con maggiore variabilità e sono più numerosi ed energetici degli sciami, ovvero di quei gruppi di terremoti caratterizzati da magnitudo contenute che non evolvono in un forte terremoto. I risultati, supportati da test statistici, suggeriscono dunque che in presenza di gruppi di terremoti numerosi ed estesi su superfici significative, i cosiddetti foreshock, le probabilità che una attività sismica minore possa culminare in un evento maggiore sia più elevata che in altre condizioni.

I volumi di roccia sotto stress

"L'ipotesi - spiegano gli scienziati - è che i volumi di roccia sotto stress inizino progressivamente a destabilizzarsi a vicenda su periodi e aree più o meno estese, producendo clusters di piccoli eventi. Maggiore è l'area su cui avvengono, più alte sono le probabilità che si generi un terremoto in grado di coinvolgere il sistema di faglie instabili nella sua intera estensione".

Sarà possibile stimare la probabilità dei grandi terremoti?

Se i risultati di questa ricerca fossero confermati, allora sarebbero limitate le speranze di poter stimare la probabilità di un grande evento sismico a partire dalle caratteristiche della sismicità precedente; al contrario, si renderebbe necessaria una caratterizzazione dello stato di stabilità dei sistemi di faglie al fine di comprendere quali siano le chances di un piccolo sciame di evolvere in una vera e propria sequenza sismica. A supporto di questa ipotesi vi sono le numerose evidenze di grandi terremoti avvenuti senza essere preceduti da foreshock o in presenza, persino, di una diminuzione dell'attività sismica, come nel caso del terremoto di Amatrice nel 2016, e il fallimento di numerosi test statistici circa l'ipotesi che i foreshocks si comportino come precursori in modo affidabile e non sporadicamente. I risultati della ricerca ci spingono a superare il concetto di "foreshocks" per spostare l'attenzione sulle condizioni di stabilità dei volumi rocciosi in cui la sismicità si verifica.

MONTAGNE SENZA NEVE

Il dato peggiora ancora

Sempre meno neve sui monti italiani. A confermare questa affermazione c'è il report mensile di <u>Fondazione Cima</u> che monitora il dato dello Snow Water Equivalent (SWE) o anche Equivalente Idrico Nivale, ovvero il valore che descrive quanta acqua è contenuta nella neve. Un numero che dà un'indicazione sulla riserva idrica su cui potremo fare affidamento nella prossima primavera e in estate. Oggi purtroppo, come detto, il valore riportato da Fondazione Cima segnala un peggioramento rispetto agli aggiornamenti di dicembre 2023 e di gennaio 2024.

Tre anni di scarsità

Dal deficit del -39% di un mese fa, oggi infatti lo SWE è passato a segnare un pesante calo al -64%. "Questa condizione va fatta risalire al tempo mite e secco, soprattutto nella seconda metà di gennaio, che ha aggravato un deficit preesistente: secondo le nostre stime, ha portato a una fusione anticipata dell'ordine di 1 miliardo di metri cubi di acqua in neve nella seconda metà di gennaio. Purtroppo, la scarsità di neve ha caratterizzato i nostri monti per tutti gli ultimi tre anni", spiega Francesco Avanzi, ricercatore dell'ambito Idrologia e Idraulica di Fondazione Cima.

LA FUTURA INVASIONE DI LOCUSTE

Il dato peggiora ancora

Secondo uno studio pubblicato da <u>Science Advances</u>, nei prossimi decenni l'areale che verrà interessato dalle locuste, che sono una piaga per l'agricoltura, aumenterà del 25%. Gli studiosi hanno consultato dati Fao e Locust Hub dal 1985 al 2020 per valutare possibili scenari futuri, sulla base della pluviometria, dell'umidità del suolo, delle temperature e dei venti. la peggiore invasione degli ultimi decenni risale al 2019-2020, quando miliardi di individui di *Schistocerca gregaria* (questo il nome scientifico) si abbatterono su Kenya, Etiopia, Somalia, Yemen e India Centrale.

CONSIGLI DI LETTURA

- Il dibattito su Milano e l'inquinamento è tutto sbagliato. Cosa dicono i dati e come ne dovremmo parlare (<u>Valigiablu</u>).
- In Salute. Resistenza antimicrobica e cambiamento climatico: un'interazione pericolosa (<u>Il Bo Live</u>).

Copyright © 2022 Cervelli in Azione srl | | Tutti i diritti riservati.

Ricevi questo messaggio perché hai compilato il <u>form d'iscrizione</u> o perché il tuo indirizzo è nel nostro database. Se ritieni che questa mail ti sia arrivata per sbaglio e non vuoi più riceverne clicca sul link in calce per disiscriverti.

Per informazioni scrivici a redazione@ilgiornaledellaprotezionecivile.it

Per informazioni sul trattamento dei dati: Privacy Policy.

Cancella iscrizione / Unsubscribe | Invia a un amico / Share with a friend